A logical and systematic problem solving process

WHAT IS SCIENCE? A process and way of learning Verb, not a noun. Action, not a thing.

Science allows us to test, challenge and question ideas.

The scientific method is....

•A logical and organized series of steps to gather information in

order to answer questions about the natural world.

The steps.....

- Ask Question & Collect Information
- Form a Hypothesis
- Test the Hypothesis / Perform Experiment
- Collect, Record & Analyze Data
- Draw Conclusions and Share Findings

If needed, do more investigation!

What the scientific method looks like on paper.....

Let's break each of these steps down into their individual components:

An organized way of learning about the natural world

- 1. Ask a question and collect information
- 2. Form a Hypothesis
- 3. Test the Hypothesis / Experimental procedure
- 4. Collect, Record & Analyze Data
- 5. Draw conclusions & Communicate Findings

<u>1.Ask a question and collect</u> <u>information</u>

- Questions arise from scientific inquiry
 - Inquiry....thinking about something!
- Inquiry begins with <u>observations</u>
 - **Observation**: a direct method of gathering information
- The processing of information leads to <u>inferences</u>
 - Inference: logical conclusions drawn from previously collected information (observations)

1.Ask a question and collect information

- So why ask questions? To learn something!
- •What if you observe that your neighbors flowers grow much better than your flowers...
 - <u>Observations</u>: taller, fuller, more fragrant, more brightly colored
 - Inference: your neighbor must take better care of their flowers.

		R
R	J.	
	R	
	R	57

1.Ask a question and collect information

- These observations and inferences lead us to ask questions and collect information...
 - What must I do in order for my flowers to grow better?
 - Then you begin collecting background information on gardening and your ready to <u>form your hypothesis</u>!

An organized way of learning about the natural world

- I. Ask a question and collect information
- 2. Form a Hypothesis
- 3. Test the Hypothesis / Experimental procedure
- 4. Collect, Record & Analyze Data
- 5. Draw conclusions & Communicate Findings

2.Formation of a hypothesis

- A scientific and testable explanation based on observations and collected information
- •So basically, an inference!
- Typically written in "If.....then....." format
 - If I do this, then this will happen.
 - If I put fertilizer on my plants, then they will grow bigger

2.Formation of a hypothesis

- Why form a hypothesis?
- The support or rejection of a hypothesis determines the validity of an experiment
 - If the data supports the hypothesis: the investigation is accepted as <u>valid</u>
 - If the data rejects the hypothesis: the hypothesis is rejected and additional investigations are conducted

So is a "wrong" hypothesis still a good hypothesis?

An organized way of learning about the natural world

- I. Ask a question and collect information
- 2. Form a Hypothesis
- 3. Test the Hypothesis / Experimental procedure
- 4. Collect, Record & Analyze Data
- 5. Draw conclusions & Communicate Findings

3.Experimental procedure- designed to test the hypothesis

Split subjects you are testing into groups:

- Experimental Group- Contains the changed variable.
- Control Group-NO changed variable. The "comparison group"
- <u>Constants</u> other variables that remain the same in all groups.

<u>Variable</u>-any factor in experiment that could be changed

- Fertilizer, sunlight, water, etc
- Independent variable factor in experiment that is changed by the scientist
 - fertilizer
- <u>Dependant variable</u> factor that is measured by the scientist
 height and ?

Remember, only test ONE manipulated variable at a time, everything else should remain constant!

An organized way of learning about the natural world

- I. Ask a question and collect information
- 2. Form a Hypothesis
- 3. Test the Hypothesis / Experimental procedure
- 4. Collect, Record & Analyze Data
- 5. Draw conclusions & Communicate Findings

4. Collect and record data

- As scientists test their hypotheses, they gather data.
 - Data information gained from observations.
- Data can be qualitative or quantitative
 - Qualitative data -physical traits (qualities) that can be described
 - Quantitative data -measurements (quantities) that can be taken

4. Collect and record data

- Quantitative Data
 - Examples: time, temperature, length, mass, area, volume, density, etc
 - NUMBERS

Qualitative Data

- Examples: descriptions of what our senses collect.
- Interpreted differently by different people
- Which type of data would you consider "stronger?"

Common measurement system •<u>Metric system or (SI)-</u> a measurement system used worldwide by scientists based on multiples of 10

- Mass-grams (g)
- Volume-liters (L)
- Distance-meters (m)
- Temperature- Kelvin (K) or Celsius (^OC)

Scientific Method Results

Qualitative?

Quantitative?

Experimental GroupControl Groupfertilizerno fertilizer

4. Collect and record data

- Analyze the data and state the results
- Pictures, tables, graphs
 - Make patterns more easily visible
 - Trends noticed

State the results

Should be a summary, not a conclusion

An organized way of learning about the natural world

- I. Ask a question and collect information
- 2. Form a Hypothesis
- 3. Test the Hypothesis / Experimental procedure
- 4. Collect, Record & Analyze Data
- 5. Draw conclusions & Communicate Findings

5.Conclusions

- •A good conclusion...
 - Restates the results
 - Addresses the hypothesis
 - Forms a conclusion

5.Conclusions

- Hypothesis is either supported or rejected. NEVER "PROVEN!"
- If supported
 - Draw conclusions, publish findings, further testing
- If rejected
 - Hypothesis is modified and tested again
- Can be partly supported
- Either way, findings are always useful!!!

5.Conclusions

After you state the results, the conclusion is the "therefore..."

- Example:
 - According to the results, the flowers given fertilizer consistently grew taller and fuller; therefore, my hypothesis is supported. The use of fertilizer will lead to better growing flowers.

COMMUNICATE RESULTS

Results of experiments are communicated formally in written reports published in scientific journals.

Other scientists can analyze the design and conclusions or repeat the experiment themselves.

Repeatability is a good check on correctness of scientific conclusions.

NOW LET'S PRACTICE!