# Weight and Mass

#### Life on Mars

- So imagine that you are on planet Mars. Is the amount of matter that makes you up different?
- Is the force pulling you downward different?



# Weight

- Weight The force pulling down on an object created by earth's gravity (9.8m/s<sup>2</sup>)
  - Weight is a FORCE
  - Therefore, units = **NEWTONS** (N)
- Your <u>Weight</u> will be different on Earth and Mars
  - Earth's gravity =  $9.8 \text{m/s}^2$
  - Moon's gravity =  $1.6 \text{m/s}^2$
  - Weight changes with gravity



# Calculating Weight

Formula: Force Weight = Mass \* Gravity

Symbols 
$$Fw = m * g$$

Units  $(N) = (kg) (m/s^2)$ 

F

Remember to use Newtons NOT Pounds since we are Scientific.
 (1 N = 2.2 lbs)

#### **Look Familiar?**

**Symbols** 

 $= \mathbf{m} * \mathbf{A}$ 

# Calculating Weight

#### **Example:**

If you have a mass of 22kg on Earth  $(9.8m/s^2)$ , what is your weight?

- $Fw = 22kg * 9.8m/s^2$
- $Fw = 215.6 \text{ kg*m/s}^2$
- $F_W = 215.6 N$

If you have a mass of 22kg on Mars (with 1/3 the gravity of Earth), what is your weight?

- $Fw = 22kg * ((9.8m/s^2) * (1/3))$
- $F_W = 22kg * 3.27m/s^2$
- $F_W = 71.94 \text{ kg*m/s}^2$
- $F_W = 71.94 \text{ N}$

# Mass

- Mass amount of matter that makes up an object.
  - Units = kg



• You have the same amount of matter everywhere.





# Weight vs. Mass



- Weight is measure of the force of gravity acting on your mass
  - Weight will be different everywhere
  - Units = N (because it is a FORCE)
- <u>Mass</u> is the same everywhere, regardless of gravity
  - Mass will always remain the same
  - Units = kg

#### Friction

• If gravity is always pulling us down (or if we are moving) we are always going to be in contact with something.



- <u>Friction</u> is a force that results from the relative motion between objects
  - AKA: The force that works against and slows motion because the surface of any object is rough

#### Friction

#### Some friction is useful

- Walking (friction between ground and foot)
- Driving (friction between ground and tire)
- Brakes (friction between brake pad and the disc (attached to wheel)
- Writing (friction between paper and pen/pencil)
- Throwing (friction between hand and ball)

#### Some friction is unwanted

- Overheating in a machine/engine is caused by friction
- Any moving that slows down when it is not wanted
- Friction makes moving heavy objects much harder







# Without Friction, we may struggle...

Man



#### And his best friend



# Recap - Weight, Gravity and Friction

- Gravity pulls everything toward center of earth.
  - 9.8m/s<sup>2</sup> (Accelearation)
- Weight is a measure of the force of gravity pulling on an object's mass.
- Friction is a force caused by the relative motion between 2 objects.



# Multiple Forces Acting At Once

There will always be MORE than 1 force acting on an object at a time.

• Net force = total of all forces

#### There are 2 options:

- Balanced forces
  - <u>Equilibrium</u> = all forces on an object are balanced and no change in movement occurs
- Unbalanced forces
  - Net forces do not equal zero
  - Motion will occur in the direction of the Net Force







- Push to the right (or pull from the right)
- Friction force
  - In the opposite direction of the push

# Free Body Diagrams - HONORS

- Identify the value for:
  - Force of Weight:
  - Normal Force:
  - Friction Coefficient:
  - "Push":



- Is this box moving?
  - If so, which direction and with what unbalanced force?

### Free Body Diagrams - HONORS

- This can be shown 2 different ways:
  - Arrows pointing towards the center of the object
  - Arrows originating from the center of the object.



