Weight and Mass

Life on Mars

- So imagine that you are on planet Mars. Is the amount of matter that makes you up different?
- Is the force pulling you downward different?

Weight

- Weight - The force pulling down on an object created by earth's gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- Weight is a FORCE
- Therefore, units = NEWTONS (N)
- Your Weight will be
different on Earth and Mars
- Earth's gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Moon's gravity $=1.6 \mathrm{~m} / \mathrm{s}^{2}$
- Weight changes with gravity

Calculating Weight

Formula:
Symbols
Units

Force Weight $=$ Mass $*$ Gravity
$\mathrm{Fw}=\mathrm{m} * \mathrm{~g}$
$(\mathrm{N})=(\mathrm{kg}) \quad\left(\mathrm{m} / \mathrm{s}^{2}\right)$

- Remember to use Newtons NOT Pounds since we are Scientific.

$$
(1 \mathrm{~N}=2.2 \mathrm{lbs})
$$

Look Familiar?

Formula: \quad Force Weight $=$ Mass * Accel due to Gravity

Symbols
Formula: Force
Symbols
$\mathrm{F} \quad=\mathrm{m} \quad * \quad \mathrm{~A}$
Fw $\quad=\mathrm{m} * \mathrm{~g}$
Force $\quad=$ Mass * Accel

Calculating Weight

Example:

If you have a mass of 22 kg on Earth $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$, what is your weight?

- $\mathrm{Fw}=22 \mathrm{~kg} * 9.8 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{Fw}=215.6 \mathrm{~kg} * \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{Fw}=215.6 \mathrm{~N}$

If you have a mass of 22 kg on Mars (with $1 / 3$ the gravity of Earth), what is your weight?

- $\mathrm{Fw}=22 \mathrm{~kg} *\left(\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) *(1 / 3)\right)$
- $\mathrm{Fw}=22 \mathrm{~kg} * 3.27 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{Fw}=71.94 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{Fw}=71.94 \mathrm{~N}$

Mass

- Mass - amount of matter that makes up an object.
- Units $=\mathrm{kg}$
- Your Mass will be the same on Earth or Mars.
- You have the same amount of matter everywhere.

Weight vs. Mass

- Weight is measure of the force of gravity acting on your mass
- Weight will be different everywhere
- Units = N (because it is a FORCE)
- Mass is the same everywhere, regardless of gravity
- Mass will always remain the same
- Units = kg

Friction

- If gravity is always pulling
us down (or if we are moving)
we are always going to be in
contact with something.
- Friction is a force that results from the relative motion between objects
- AKA:The force that works against and slows motion because the surface of any object is rough

Friction

- Some friction is useful

- Walking (friction between ground and foot)

- Driving (friction between ground and tire)
- Brakes (friction between brake pad and the disc (attached to wheel)
- Writing (friction between paper and pen/pencil)
- Throwing (friction between hand and ball)
- Some friction is unwanted
- Overheating in a machine/engine is caused by friction
- Any moving that slows down when it is not wanted
- Friction makes moving heavy objects much harder

Without Friction, we may struggle...

Man

And his best friend

Recap - Weight, Gravity and Friction

- Gravity pulls everything toward center of earth.
$\bullet 9.8 \mathrm{~m} / \mathrm{s}^{2}$ (Accelearation)
- Weight is a measure of the force of gravity pulling on an object's mass.
- Friction is a force caused by the relative motion between 2 objects.

Multiple Forces Acting At Once

There will always be MORE than 1 force acting on an object at a time.

- Net force $=$ total of all forces

$$
\begin{array}{cc}
\mathbf{F}_{2}= & \mathbf{F}_{1}= \\
20 \text { Newtons } & -20 \\
\text { Newtons }
\end{array}
$$

Net Force = 0 Newtons

There are 2 options:

- Balanced forces
- $\underline{\text { Equilibrium }}=$ all forces on an object are balanced and no change in movement occurs
- Unbalanced forces
- Net forces do not equal zero
- Motion will occur in the direction of the Net Force
$\begin{array}{cc}\mathbf{F}_{2}= & \mathbf{F}_{1}= \\ 18 & \text { Newtons } \\ -20 & \text { Newtons }\end{array}$

Net Force = -2 Newtons

Free Body Diagrams - HONORS

- There is a box on the table.
- What forces are acting on this box?
- Weight
- Gravity pulling down on the box
- Normal Force
- Table pushing up

Free Body Diagrams - HONORS

- Identify the value for:
- Force of Weight:
- Normal Force:
- Friction Coefficient:
- "Push":

- Is this box moving?
- If so, which direction and with what unbalanced force?

Free Body Diagrams - HONORS

- This can be shown 2 different ways:
- Arrows pointing towards the center of the object
- Arrows originating from the center of the object.

$$
\mathrm{F}_{\mathrm{gray}}=\mathbf{3} \mathbf{N}
$$

